Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

SchNetPack: A Deep Learning Toolbox For Atomistic Systems

Authors
Schutt, K. T.Kessel, P.Gastegger, M.Nicoli, K. A.Tkatchenko, A.Muller, K. -R
Issue Date
1월-2019
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, v.15, no.1, pp.448 - 455
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume
15
Number
1
Start Page
448
End Page
455
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/68483
DOI
10.1021/acs.jctc.8b00908
ISSN
1549-9618
Abstract
SchNetPack is a toolbox for the development and application of deep neural networks that predict potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training, and provides simple access to common benchmark datasets. This allows for an easy implementation and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atom-centered symmetry functions and the deep tensor neural network SchNet, as well as ready-to-use scripts that allow one to train these models on molecule and material datasets. Based on the PyTorch deep learning framework, SchNetPack allows one to efficiently apply the neural networks to large datasets with millions of reference calculations, as well as parallelize the model across multiple GPUs. Finally, SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to researchers that are not yet familiar with neural networks.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE