Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

합성 곱 신경망 기반 웹 응용 트래픽 분류 모델 설계Design of Web Application Traffic Classification Model Based on Convolution Neural Network

Other Titles
Design of Web Application Traffic Classification Model Based on Convolution Neural Network
Authors
지세현백의준신무곤채병민문호원김명섭
Issue Date
2019
Publisher
한국통신학회
Keywords
Traffic Classification; Machine Learning; Convolution Neural Network; Application Traffic; 트래픽 분류; 머신러닝; 합성 곱 신경망; 응용 트래픽
Citation
한국통신학회논문지, v.44, no.6, pp.1113 - 1120
Indexed
KCI
Journal Title
한국통신학회논문지
Volume
44
Number
6
Start Page
1113
End Page
1120
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/69520
DOI
10.7840/kics.2019.44.6.1113
ISSN
1226-4717
Abstract
네트워크 관리의 기본 역할은 사용자에게 적합한 QoS(Quality of Service)를 제공하는 것이다. 적합한 QoS를제공하고 안전한 네트워크 환경을 만들기 위해 정확한 응용 트래픽 분류는 필수적이다. 기존의 트래픽 분류 기법으로는 포트기반의 분류 기법, 페이로드 기반의 분류 기법, 통계정보 기반의 분류 기법이 있다. 그러나 동적인 포트 혹은 암호화된 페이로드를 갖는 패킷을 발생시키는 응용의 등장으로 인해 기존의 트래픽 분류 기법의 한계점이 발생하고 있다. 기존의 트래픽 분류 기법에 대한 한계점을 해결하기 위해 본 논문은 10종류의 웹 응용 트래픽(Baidu, Bing, Daum, Google, Kakaotalk, Nate, Naver, Yahoo, Youtube, Zum)에 대해 머신러닝 알고리즘 중 하나인 합성 곱 신경망(Convolution Neural Network) 알고리즘을 적용한 응용 트래픽 분류 모델 설계 방법을 제안한다. 제안한 모델의 학습 분류 정확도는 100%, 검증 분류 정확도는 99.6%의 성능을 달성하였다.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Computer and Information Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, MYUNG SUP photo

KIM, MYUNG SUP
컴퓨터정보학과
Read more

Altmetrics

Total Views & Downloads

BROWSE