Tunable fabrication of core- shell Ni-MnO2 hybrid foams through structure- guided combustion waves for binder- free high- performance supercapacitor electrodes
- Authors
- Hwang, Hayoung; Shin, Dongjoon; Kim, Taewon; Park, Seonghyun; Yeo, Taehan; Choi, Wonjoon
- Issue Date
- 7-12월-2018
- Publisher
- ROYAL SOC CHEMISTRY
- Citation
- JOURNAL OF MATERIALS CHEMISTRY A, v.6, no.45, pp.22998 - 23009
- Indexed
- SCIE
SCOPUS
- Journal Title
- JOURNAL OF MATERIALS CHEMISTRY A
- Volume
- 6
- Number
- 45
- Start Page
- 22998
- End Page
- 23009
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/71223
- DOI
- 10.1039/c8ta08110g
- ISSN
- 2050-7488
- Abstract
- Hybrid foam structures of metal and carbon are extensively used for electrochemical applications. However, their fabrication involves solution- or vacuum-processing, which damages the metal backbones or increases the fabrication time and cost. Herein, we report a tunable method for the scalable fabrication of core-shell metal-carbon hybrid foams using structure-guided combustion waves (SGCWs) and their application for the synthesis of core-shell Ni-MnO2 hybrid foams as binder-free supercapacitor electrodes. SGCWs passing through the hybrids of nickel foams and chemical fuels, prepared by a wet impregnation method, enabled the direct fabrication of carbon coatings on the surfaces of the inner nickel backbones and yielded core-shell Ni@C. The incompletely combusted carbonaceous fuels in a few seconds, which were formed in the narrowly confined foam structures reaching 430 degrees C, acted as amorphous carbon coatings, while the total amount and uniformity of the carbon content could be controlled by the number of times SGCWs were applied. The developed carbon coatings were used as templates for MnO2 shells to synthesize core-shell Ni@MnO2 hybrid foams as binder-free supercapacitor electrodes. The core-shell Ni@MnO2 foams fabricated by applying SGCWs three times exhibited a high specific capacitance of up to 660 F g(-1) and stable capacitance retention (approximate to 95.4% over more than 10000 cycles) because of their lower serial resistance and optimal diffusion during the redox reaction. This tunable fabrication method using SGCWs in a vacuum-free, open-air environment enables the synthesis of scalable carbon coatings on metal- or ceramic-based foams for electrochemical applications.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Mechanical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.