Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Field Experiments to Evaluate Thermal Performance of Energy Slabs with Different Installation Conditions

Authors
Lee, SeokjaePark, SangwooKang, MinkyuChoi, Hangseok
Issue Date
Nov-2018
Publisher
MDPI
Keywords
energy slab; ground heat exchanger; underground structure; Thermal Response Test; Thermal Performance Test
Citation
APPLIED SCIENCES-BASEL, v.8, no.11
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SCIENCES-BASEL
Volume
8
Number
11
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/71920
DOI
10.3390/app8112214
ISSN
2076-3417
Abstract
The energy slab is a novel type of horizontal Ground Heat Exchanger (GHEX), where heat exchange pipes are encased in building slab structures. The thermal performance of energy slabs is usually inferior to the conventional closed-loop vertical GHEX because its installation depth is relatively shallow and therefore affected by ambient air temperature. In this paper, heat exchange pipes were made of not only conventional high-density polyethylene (HDPE), but also stainless steel (STS), which is expected to enhance the thermal performance of the energy slabs. In addition to a floor slab, a side wall slab was also used as a component of energy slabs to maximize the use of geothermal energy that can be generated from the underground space. Moreover, a thermal insulation layer in the energy slabs was considered in order to reduce thermal interference induced by ambient air temperature. Consequently, two different field-scale energy slabs (i.e., floor-type and wall-type energy slabs) were constructed in a test bed, and two types of heat exchange pipes (i.e., STS pipe and HDPE pipes) were installed in each energy slab. A series of thermal response tests (TRTs) and thermal performance tests (TPTs) were conducted to evaluate the heat exchange performance of the constructed energy slabs. Use of the STS heat exchange pipe enhanced the thermal performance of energy slabs. Additionally, the wall-type energy slab had a similar thermal performance to the floor-type energy slab, which infers the applicability of the additional use of the wall-type energy slab. Note that if an energy slab is not thermally cut off from the building's interior space with the aid of thermal insulation layers, heat exchange within the energy slabs should be significantly influenced by fluctuations in ambient temperature.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOI, HANG SEOK photo

CHOI, HANG SEOK
College of Engineering (School of Civil, Environmental and Architectural Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE