Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deformation twinning of ultrahigh strength aluminum nanowire

Authors
Kim, Sung-HoonKim, Hong-KyuSeo, Jong-HyunWhang, Dong-MokAhn, Jae-PyoungLee, Jae-Chul
Issue Date
11월-2018
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
In situ tension test; Aluminum; Nanowire; Deformation twinning; MD simulation
Citation
ACTA MATERIALIA, v.160, pp.14 - 21
Indexed
SCIE
SCOPUS
Journal Title
ACTA MATERIALIA
Volume
160
Start Page
14
End Page
21
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/71996
DOI
10.1016/j.actamat.2018.08.047
ISSN
1359-6454
Abstract
Recent studies have demonstrated that many metal nanowires (NWs) with low stacking-fault energies display ultrahigh strength and can accommodate large plastic strains by spreading mechanical twins throughout the entire volume of the NWs. This previous observation on the plasticity, however, is largely different from that exhibited by Al NWs. In situ tensile tests performed on the < 110 > Al NW revealed that the NW exhibited ultrahigh strength (similar to 2.7 GPa) and superelasticity (similar to 4.8%), while contrary to expectations, it failed quickly once plastic flow initiates and displayed a limited plasticity (similar to 1.2%). This low plasticity was attributed to the formation of thin-layered twins with a zigzag configuration. Upon further deformation, these twins self-locked with each other, which prevented the NWs from carrying further plastic strains. Here, by employing the in situ micro-mechanical test and the atomic simulations, we performed quantitative and comprehensive analyses to explore why Al NWs display ultrahigh strength and how twins with a zigzag configuration are formed in the Al NWs. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jae chul photo

Lee, Jae chul
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE