Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Triaryl boron derivatives of pyridine as electron transporting materials for blue phosphorescent organic light-emitting diodes

Authors
Lee, JiewonLee, SunheeKim, Jin-HyoungKang, Sang OokHan, Won-Sik
Issue Date
11월-2018
Publisher
ELSEVIER SCIENCE BV
Keywords
ETM for blue OLEDs; High thermal stability; High triplet energy
Citation
ORGANIC ELECTRONICS, v.62, pp.5 - 11
Indexed
SCIE
SCOPUS
Journal Title
ORGANIC ELECTRONICS
Volume
62
Start Page
5
End Page
11
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/72035
DOI
10.1016/j.orgel.2018.07.014
ISSN
1566-1199
Abstract
Two duryl borane derivatives, tris(2,3,5,6-tetramethyl-4-(pyridin-3-yl)phenyl)borane (TDPB) and tris(2,3,5,6-tetramethyl-4'-(pyridin-3-ye)biphenyl-4-yl)borane (TDPPB), which contain heteroaromatic pyridine rings at peripheral positions were synthesized to investigate the effects of bridging phenyl group on their thermal, photophysical, and electrochemical properties. Upon adding a phenyl unit between duryl and pyridine units, TDPPB showed slightly higher thermal stability (T-d = 446 degrees C and T-g = 166 degrees C) than TDPB (T-d = 439 degrees C and T-g = 142 degrees C). Both TDPB and TDPPB have deep highest occupied molecular orbital levels to block the holes/ excitons and appropriate lowest unoccupied molecular orbital levels for smooth electron injection. Notably, TDPB and TDPPB exhibited relatively high triplet energies of 2.84 eV and 2.69 eV, respectively. Thus, the triplet energy level of TDPB is sufficient for use in bis[2-(4,6-difluorophenyepyridinato-C-2,N](picolinato)iridium(III) (FIrpic) based blue phosphorescent organic light-emitting diodes (PHOLEDs) as an electron transport material. Accordingly, TDPB was used as an electron transport material in FIrpic-based blue PHOLEDs and the optimized device showed high external quantum efficiency of up to 18.8%.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE