Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance

Authors
Song, Kwon-HoKim, Jae-HoonLee, Young-HoBae, Hyun CheolLee, Hyo-JungWoo, Seon RangOh, Se JinLee, Kyung-MiYee, CassianKim, Bo WookCho, HanbyoulChung, Eun JooChung, Joon-YongHewitt, Stephen M.Chung, Tae-WookHa, Ki-TaeBae, Young-KiMao, Chih-PingYang, AndrewWu, T. C.Kim, Tae Woo
Issue Date
31-8월-2018
Publisher
AMER SOC CLINICAL INVESTIGATION INC
Citation
JOURNAL OF CLINICAL INVESTIGATION, v.128, no.9, pp.4098 - 4114
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF CLINICAL INVESTIGATION
Volume
128
Number
9
Start Page
4098
End Page
4114
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/73709
DOI
10.1172/JCI96804
ISSN
0021-9738
Abstract
The host immune system plays a pivotal role in the emergence of tumor cells that are refractory to multiple clinical interventions including immunotherapy, chemotherapy, and radiotherapy. Here, we examined the molecular mechanisms by which the immune system triggers cross-resistance to these interventions. By examining the biological changes in murine and tumor cells subjected to sequential rounds of in vitro or in vivo immune selection via cognate cytotoxic T lymphocytes, we found that multimodality resistance arises through a core metabolic reprogramming pathway instigated by epigenetic loss of the ATP synthase subunit ATP5H, which leads to ROS accumulation and HIF-1 alpha stabilization under normoxia. Furthermore, this pathway confers to tumor cells a stem-like and invasive phenotype. In vivo delivery of antioxidants reverses these phenotypic changes and resensitizes tumor cells to therapy. ATP5H loss in the tumor is strongly linked to failure of therapy, disease progression, and poor survival in patients with cancer. Collectively, our results reveal a mechanism underlying immune-driven multimodality resistance to cancer therapy and demonstrate that rational targeting of mitochondrial metabolic reprogramming in tumor cells may overcome this resistance. We believe these results hold important implications for the clinical management of cancer.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kyung Mi photo

Lee, Kyung Mi
의과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE