Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Synaptic Plasticity and Metaplasticity of Biological Synapse Realized in a KNbO3 Memristor for Application to Artificial Synapse

Authors
Lee, Tae-HoHwang, Hyun-GyuWoo, Jong-UnKim, Dae-HyeonKim, Tae-WookNahm, Sahn
Issue Date
1-8월-2018
Publisher
AMER CHEMICAL SOC
Keywords
amorphous KNbO3 films; memristor; neuromorphic computing; artificial synapse; synaptic metaplasticity
Citation
ACS APPLIED MATERIALS & INTERFACES, v.10, no.30, pp.25673 - 25682
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
10
Number
30
Start Page
25673
End Page
25682
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/73799
DOI
10.1021/acsami.8b04550
ISSN
1944-8244
Abstract
Amorphous KNbO3 (KN) films were grown on a TiN/SiO2/Si substrate to synthesize a KN memristor as a potential artificial synapse. The Pt/KN/TiN memristor exhibited typical and reliable bipolar switching behavior with multiple resistance levels. It also showed the transmission properties of a biological synapse, with a good conductance modulation linearity. Moreover, the KN memristor can emulate various biological synaptic plasticity characteristics including short-term plasticity, long-term plasticity, spike-rate dependent plasticity, paired-pulse facilitation, and post-tetanic potentiation by controlling the number and rate of the potentiation spike. Spike-timing-dependent plasticity (STDP), which is an essential property of biological synapses, is also realized in the KN memristor. The synaptic plasticity of the KN memristor can be explained by oxygen vacancy movement and oxygen vacancy filaments. The metaplasticity of biological synapses was also implemented in the KN memristor, including the metaplasticity of long-term potentiation and depression, and of STDP. Therefore, the KN memristor could be used as an artificial synapse in neuromorphic computing systems.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE