Modeling large permittivity of poly(vinylidenefluoride-co-trifluoroethylene) and nanospring single-walled carbon nanotube-polyvinylpyrrolidone nanocomposites
- Authors
- Lee, Yun Jae; Kim, Jung Hyuk; Ham, Sora; Ju, Byeong-Kwon; Choi, Won Kook
- Issue Date
- 8월-2018
- Publisher
- AMER INST PHYSICS
- Citation
- AIP ADVANCES, v.8, no.8
- Indexed
- SCIE
SCOPUS
- Journal Title
- AIP ADVANCES
- Volume
- 8
- Number
- 8
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/73853
- DOI
- 10.1063/1.5036573
- ISSN
- 2158-3226
- Abstract
- Highly dispersible nanospring single-walled carbon nanotubes (NS-CNTs) were incorporated in a P(VDF-TrFE) copolymer with up to 15 wt.% of nanofiller. The relative dielectric constant (K) of the polymer nanocomposite at 1 kHz was greatly enhanced from 12.7 to 62.5 at 11 wt.% of NS-CNTs, corresponding to a 492% increase over that of pristine P(VDF-TrFE) with only a small dielectric loss tangent (D) of 0.1. Based on two theoretical models, the Bruggeman equation and self-consistent effective medium theory (SC-EMT), experimental permittivity data for the P(VDF-TrFE) and NS-CNTs nanocomposites were simulated to estimate the dielectric constant of the NS-CNTs while changing both the shape of the nanofillers and the volume fraction of the interface when increasing the number of NS-CNTs in piled layers of P(VDF-TrFE). The number of NS-CNTs layers was counted from HR-TEM images to calculate the interfacial volume fraction, and used to infer the Eshelby tensor of the NS-CNTs in the SC-EMT model. The experimental dielectric constants of the composite films fit the Bruggeman equation and SC-EMT theory well for dielectric constants k=240-360, showing that the NS-CNTs nanofillers may be considered electrically semiconductive. (c) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.