Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Modeling large permittivity of poly(vinylidenefluoride-co-trifluoroethylene) and nanospring single-walled carbon nanotube-polyvinylpyrrolidone nanocomposites

Authors
Lee, Yun JaeKim, Jung HyukHam, SoraJu, Byeong-KwonChoi, Won Kook
Issue Date
8월-2018
Publisher
AMER INST PHYSICS
Citation
AIP ADVANCES, v.8, no.8
Indexed
SCIE
SCOPUS
Journal Title
AIP ADVANCES
Volume
8
Number
8
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/73853
DOI
10.1063/1.5036573
ISSN
2158-3226
Abstract
Highly dispersible nanospring single-walled carbon nanotubes (NS-CNTs) were incorporated in a P(VDF-TrFE) copolymer with up to 15 wt.% of nanofiller. The relative dielectric constant (K) of the polymer nanocomposite at 1 kHz was greatly enhanced from 12.7 to 62.5 at 11 wt.% of NS-CNTs, corresponding to a 492% increase over that of pristine P(VDF-TrFE) with only a small dielectric loss tangent (D) of 0.1. Based on two theoretical models, the Bruggeman equation and self-consistent effective medium theory (SC-EMT), experimental permittivity data for the P(VDF-TrFE) and NS-CNTs nanocomposites were simulated to estimate the dielectric constant of the NS-CNTs while changing both the shape of the nanofillers and the volume fraction of the interface when increasing the number of NS-CNTs in piled layers of P(VDF-TrFE). The number of NS-CNTs layers was counted from HR-TEM images to calculate the interfacial volume fraction, and used to infer the Eshelby tensor of the NS-CNTs in the SC-EMT model. The experimental dielectric constants of the composite films fit the Bruggeman equation and SC-EMT theory well for dielectric constants k=240-360, showing that the NS-CNTs nanofillers may be considered electrically semiconductive. (c) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ju, Byeong kwon photo

Ju, Byeong kwon
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE