Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt
- Authors
- Bae, Sang-Eun; Jung, Tae Sub; Cho, Young-Hwan; Kim, Jong-Yun; Kwak, Kyungwon; Park, Tae-Hong
- Issue Date
- 16-7월-2018
- Publisher
- AMER CHEMICAL SOC
- Citation
- INORGANIC CHEMISTRY, v.57, no.14, pp.8299 - 8306
- Indexed
- SCIE
SCOPUS
- Journal Title
- INORGANIC CHEMISTRY
- Volume
- 57
- Number
- 14
- Start Page
- 8299
- End Page
- 8306
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/74333
- DOI
- 10.1021/acs.inorgchem.8b00909
- ISSN
- 0020-1669
- Abstract
- The electrochemical reduction of trivalent samarium in a LiCl-KCl eutectic melt produced highly stable divalent samarium, whose electrochemical properties and electronic structure in the molten salt were investigated using cyclic voltammetry, UV-vis absorption spectroscopy, laser-induced emission spectroscopy, and density functional theory (DFT) calculations. Diffusion coefficients of Sm2+ and Sm3+ were electrochemically measured to be 0.92 X 10(-5) and 1.10 X 10(-5) cm(2)/s, respectively, and the standard apparent. potential of the Sm2+/3+ couple was estimated to be -0.82 V vs Ag vertical bar Ag+ at 450 degrees C. The spectroelectrochemical study demonstrated that the redox behavior of the samarium cations obeys the Nernst equation (E degrees' = -0.83 V, n = 1) and the trivalent samarium cation was successfully converted to the divalent cation having characteristic absorption bands at 380 and 530 nm with molar absorptivity values of 1470 and 810 M-1 cm(-1) respectively. Density function theory calculations for the divalent samarium complex revealed that the absorption signals originated from the 4f(6) to 4f(5)5d(1) transitions. Additionally, laser-induced emission measurements for the Sm cations in the LiCl-KCl matrix showed that the Sm3+ ion in the LiCl-KCl melt at 450 degrees C emitted an orange color of fluorescence, whereas a red colored emission was observed from the Sm2+ ion in the solidified LCl-KCl salt at room temperature.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Science > Department of Chemistry > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.