Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage
- Authors
- Cha, Bong Geun; Jeong, Han-Gil; Kang, Dong-Wan; Nam, Myong-Joo; Kim, Chi Kyung; Kim, Do Yeon; Choi, In-Young; Ki, Seul; Kim, Song I.; Han, Ju Hee; Kim, Jaeyun; Lee, Seung-Hoon
- Issue Date
- 7월-2018
- Publisher
- TSINGHUA UNIV PRESS
- Keywords
- magnetic mesoporous silica nanoparticle; ceria nanoparticles; intracerebral hemorrhage; reactive oxygen species; therapeutics; imaging
- Citation
- NANO RESEARCH, v.11, no.7, pp.3582 - 3592
- Indexed
- SCIE
SCOPUS
- Journal Title
- NANO RESEARCH
- Volume
- 11
- Number
- 7
- Start Page
- 3582
- End Page
- 3592
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/74845
- DOI
- 10.1007/s12274-017-1924-5
- ISSN
- 1998-0124
- Abstract
- Intracerebral hemorrhage (ICH), caused by the sudden rupture of an artery within the brain, is a devastating subtype of stroke, which currently has no effective treatment. Intense inflammatory reactions that occur in the peri-hematomal area after ICH are more deleterious than the hematoma itself, resulting in subsequent brain edema and neurologic deterioration. Thus, we developed lipid-coated magnetic mesoporous silica nanoparticles doped with ceria nanoparticles (CeNPs), abbreviated as LMCs, which have both potent anti-inflammatory therapeutic effects via scavenging reactive oxygen species and help in increasing the efficacy of magnetic resonance imaging enhancement in the peri-hematomal area. LMCs consist of mesoporous silica nanoparticle-supported lipid bilayers, which are loaded with large amounts of CeNPs for scavenging of reactive oxygen species, and iron oxide nanoparticles for magnetic resonance imaging contrast. LMCs loaded with CeNPs exhibited strong anti-oxidative and anti-inflammatory activities in vitro. In the rodent ICH model, intracerebrally injected LMCs reached the peri-hematomal area and were engulfed by macrophages, which were clearly visualized by magnetic resonance imaging of the brain. Moreover, LMCs reduced inflammatory macrophage infiltration, and thus significantly reduced brain edema. Finally, LMC treatment markedly improved neurologic outcomes of the animals with ICH. Thus, LMC is the first nanobiomaterial that successfully showed theragnostic effects in ICH.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Medicine > Department of Medical Science > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.