Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses

Authors
Shin, JaeyoungKim, Do-WonMueller, Klaus-RobertHwang, Han-Jeong
Issue Date
6월-2018
Publisher
MDPI
Keywords
brain-computer interface; EEG; information transfer rate; NIRS; pseudo-online
Citation
SENSORS, v.18, no.6
Indexed
SCIE
SCOPUS
Journal Title
SENSORS
Volume
18
Number
6
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/75010
DOI
10.3390/s18061827
ISSN
1424-8220
Abstract
Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive neuroimaging methods that record the electrical and metabolic activity of the brain, respectively. Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS information to enhance BCI performance have recently emerged to overcome the limitations of existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related brain activation, a relatively long trial length (10 s) is selected owing to the inherent hemodynamic delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation, we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA) and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this experiment, EEG and NIRS data were simultaneously recorded while participants performed MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently, a classification was performed to discriminate MA-related or WC-related brain activations from BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification accuracies of 90.0 +/- 7.1/85.5 +/- 8.1% and 85.8 +/- 8.6/79.5 +/- 13.4% for MA vs. BL and WC vs. BL, respectively, were achieved. These were significantly higher than those of the unimodal EEG- or NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively, compared to those reported in previous studies. The suitability of implementing a more practical hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was validated when compared to previous studies.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles
Graduate School > Department of Electronics and Information Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE