Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules

Authors
Pronobis, WiktorTkatchenko, AlexandreMueller, Klaus-Robert
Issue Date
6월-2018
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, v.14, no.6, pp.2991 - 3003
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume
14
Number
6
Start Page
2991
End Page
3003
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/75049
DOI
10.1021/acs.jctc.8b00110
ISSN
1549-9618
Abstract
Machine learning (ML) based prediction of molecular properties across chemical compound space is an important and alternative approach to efficiently estimate the solutions of highly complex many-electron problems in chemistry and physics. Statistical methods represent molecules as descriptors that should encode molecular symmetries and interactions between atoms. Many such descriptors have been proposed; all of them have advantages and limitations. Here, we propose a set of general two-body and three-body interaction descriptors which are invariant to translation, rotation, and atomic indexing. By adapting the successfully used kernel ridge regression methods of machine learning, we evaluate our descriptors on predicting several properties of small organic molecules calculated using density-functional theory. We use two data sets. The GDB-7 set contains 6868 molecules with up to 7 heavy atoms of type CNO. The GDB-9 set is composed of 131722 molecules with up to 9 heavy atoms containing CNO. When trained on 5000 random molecules, our best model achieves an accuracy of 0.8 kcal/mol (on the remaining 1868 molecules of GDB-7) and 1.5 kcal/mol (on the remaining 126722 molecules of GDB-9) respectively. Applying a linear regression model on our novel many-body descriptors performs almost equal to a nonlinear kernelized model. Linear models are readily interpretable: a feature importance ranking measure helps to obtain qualitative and quantitative insights on the importance of two- and three-body molecular interactions for predicting molecular properties computed with quantum-mechanical methods.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE