Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries
- Authors
- Park, Jin-Sung; Jeong, Sun Young; Jeon, Kyung Min; Kang, Yun Chan; Cho, Jung Sang
- Issue Date
- 1-5월-2018
- Publisher
- ELSEVIER SCIENCE SA
- Keywords
- Iron diselenide; Carbon composite; Graphitic carbon; Anode material; Sodium-ion battery
- Citation
- CHEMICAL ENGINEERING JOURNAL, v.339, pp.97 - 107
- Indexed
- SCIE
SCOPUS
- Journal Title
- CHEMICAL ENGINEERING JOURNAL
- Volume
- 339
- Start Page
- 97
- End Page
- 107
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/75582
- DOI
- 10.1016/j.cej.2018.01.118
- ISSN
- 1385-8947
- Abstract
- A scalable method for the synthesis of iron diselenide (FeSe2) nanoparticles composited with hollow graphitic-carbon nanospheres (HGCNS) is presented. The resultant composite exhibits high sodium-ion-storage performance. A solution of iron acetylacetonate, polystyrene, and polyacrylonitrile dissolved in dimethylformamide is subjected to three continuous heat treatment steps. During this process, the amorphous carbon formed around the Fe species in the composite is selectively transformed into graphitic carbon by the catalytic action of the Fe. Residual amorphous carbon was selectively removed. Subsequent selenization of this carbonaceous material affords FeSe2-HGCNS composite. The discharge capacity of this composite is 425 mA h g(-1) after 100 cycles at a current density of 0.5 A g(-1), and its capacity retention compared to that in the third cycle is 94%. The excellent sodium-ion-storage performance of the composite is attributed to both ultrafine FeSe2 and HGCNS, which decrease Na+ ion diffusion length, increase electrical conductivity and allow easy penetration of the electrolyte.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.