Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of biochar particle size on hydrophobic organic compound sorption kinetics: Applicability of using representative size

Authors
Kang, SejuJung, JihyeunChoe, Jong KwonOk, Yong SikChoi, Yongju
Issue Date
1-4월-2018
Publisher
ELSEVIER SCIENCE BV
Keywords
Biochar; Sorption kinetics; Particle size; Intra-particle diffusion model; Hydrophobic organic compound
Citation
SCIENCE OF THE TOTAL ENVIRONMENT, v.619, pp.410 - 418
Indexed
SCIE
SCOPUS
Journal Title
SCIENCE OF THE TOTAL ENVIRONMENT
Volume
619
Start Page
410
End Page
418
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/76178
DOI
10.1016/j.scitotenv.2017.11.129
ISSN
0048-9697
Abstract
Particle size of biochar may strongly affect the kinetics of hydrophobic organic compound (HOC) sorption. However, challenges exist in characterizing the effect of biochar particle size on the sorption kinetics because of the wide size range of biochar. The present study suggests a novel method to determine a representative value that can be used to show the dependence of HOC sorption kinetics to biochar particle size on the basis of an intra-particle diffusion model. Biochars derived from three different feedstocks are ground and sieved to obtain three daughter products each having different size distributions. Phenanthrene sorption kinetics to the biochars are well described by the intra-particle diffusion model with significantly greater sorption rates observed for finer grained biochars. The time to reach 95% of equilibrium for phenanthrene sorption to biochar is reduced from 4.6-17.9 days for the original biochars to <1-4.6 days for the powdered biochars with <125 mu m in size. A moderate linear correlation is found between the inverse square of the representative biochar particle radius obtained using particle size distribution analysis and the apparent phenanthrene sorption rates determined by the sorption kinetics experiments and normalized to account for the variation of the sorption rate-determining factors other than the biochar particle radius. The results suggest that the representative biochar particle radius reasonably describes the dependence of HOC sorption rates on biochar particle size. (C) 2017 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE