Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

Authors
Kim, Si-WonBae, YonggyunYoon, Kyung JoongLee, Jong-HoLee, Jong-HeunHong, Jongsup
Issue Date
28-2월-2018
Publisher
ELSEVIER SCIENCE BV
Keywords
Electrolysis; CO2 reduction; Solid oxide cell; Area specific resistance; CO2 conversion; Syngas selectivity
Citation
JOURNAL OF POWER SOURCES, v.378, pp.369 - 374
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF POWER SOURCES
Volume
378
Start Page
369
End Page
374
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/77303
DOI
10.1016/j.jpowsour.2017.12.060
ISSN
0378-7753
Abstract
To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H-2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE