Motion-Based Rapid Serial Visual Presentation for Gaze-Independent Brain-Computer Interfaces
- Authors
- Won, Dong-Ok; Hwang, Han-Jeong; Kim, Dong-Min; Mueller, Klaus-Robert; Lee, Seong-Whan
- Issue Date
- 2월-2018
- Publisher
- IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
- Keywords
- Brain-computer interface (BCI); gaze-independent; event-related potential (ERP); rapid serial visual presentation (RSVP)
- Citation
- IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, v.26, no.2, pp.334 - 343
- Indexed
- SCIE
SCOPUS
- Journal Title
- IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING
- Volume
- 26
- Number
- 2
- Start Page
- 334
- End Page
- 343
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/77834
- DOI
- 10.1109/TNSRE.2017.2736600
- ISSN
- 1534-4320
- Abstract
- Most event-related potential (ERP)-based brain-computer interface (BCI) spellers primarily usematrix layouts and generally require moderate eye movement for successful operation. The fundamental objective of this paper is to enhance the perceptibility of target characters by introducingmotion stimuli to classical rapid serial visual presentation (RSVP) spellers that do not require any eye movement, thereby applying them to paralyzed patients with oculomotor dysfunctions. To test the feasibility of the proposed motion-based RSVP paradigm, we implemented three RSVP spellers: 1) fixed-direction motion (FM-RSVP); 2) random-directionmotion (RM-RSVP); and 3) (the conventional) non-motion stimulation (NM-RSVP), and evaluated the effect of the three different stimulation methods on spelling performance. The two motion-based stimulation methods, FM-and RM-RSVP, showed shorter P300 latency and higher P300 amplitudes (i.e., 360.4-379.6 ms; 5.5867-5.7662 mu V) than the NM-RSVP (i.e., 480.4 ms; 4.7426 mu V). This led to higher andmore stable performances for FM-and RM-RSVP spellers than NM-RSVP speller (i.e., 79.06 +/- 6.45% for NM-RSVP, 90.60 +/- 2.98% for RM-RSVP, and 92.74 +/- 2.55% for FM-RSVP). In particular, the proposed motion-based RSVP paradigm was significantly beneficial for about half of the subjects who might not accurately perceive rapidly presented static stimuli. These results indicate that the use of proposed motion-based RSVP paradigm is more beneficial for target recognitionwhen developing BCI applications for severely paralyzed patients with complex ocular dysfunctions.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Electronics and Information Engineering > 1. Journal Articles
- Graduate School > Department of Artificial Intelligence > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.