Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Formation of nanopores in DiynePC-DPPC complex lipid bilayers triggered by on-demand photo-polymerization

Authors
Chun, Min JungChoi, Yeol KyoAhn, Dong June
Issue Date
2018
Publisher
ROYAL SOC CHEMISTRY
Citation
RSC ADVANCES, v.8, no.49, pp.27988 - 27994
Indexed
SCIE
SCOPUS
Journal Title
RSC ADVANCES
Volume
8
Number
49
Start Page
27988
End Page
27994
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/80868
DOI
10.1039/c8ra04908d
ISSN
2046-2069
Abstract
Vesicles have unique characteristics that enable the release of drugs as well as encapsulation while maintaining biocompatibility. A photo-polymerizable liposome composed of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (23: 2 DiynePC) has been investigated as vehicles for triggered delivery of drugs to cells. In this study, we confirmed for the first time that supported lipid bilayers (SLBs) prepared with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/DiynePC mixture generated pores ca. 100-300 nm in size on the membrane after UV polymerization. This direct observation was done by analyzing the SLBs formed with the DPPC/DiynePC mixture by employing atomic force microscopy (AFM) in a liquid environment. However, photo-polymerization did not occur in the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/DiynePC mixed bilayer and pores were not formed. A theoretical study was performed to explore the phase behavior of the lipid mixtures. A coarse-grained model of DiynePC was developed that is comparable with the Martini force field; the parameters were validated against atomistic simulations. Transition from fluidic to gel phase was observed only when DiynePC was mixed with DPPC, whereas the DOPC mixture remained fluidic over the entire domain. This implies a correlation between the formation of DiynePC-rich gel phase domains and the generation of pores after polymerization. The size of the pores were found to be controlled by the amount of polymerizable lipid which results in higher release rate of encapsulated calcein from the vesicles with larger pores.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Dong June photo

Ahn, Dong June
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE