Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology

Authors
Kim, Jeong-KiLouhghalam, ArghavanLee, GeonhuiSchafer, Benjamin W.Wirtz, DenisKim, Dong-Hwee
Issue Date
14-12월-2017
Publisher
NATURE PUBLISHING GROUP
Citation
NATURE COMMUNICATIONS, v.8
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
8
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81183
DOI
10.1038/s41467-017-02217-5
ISSN
2041-1723
Abstract
The distinct spatial architecture of the apical actin cables (or actin cap) facilitates rapid biophysical signaling between extracellular mechanical stimuli and intracellular responses, including nuclear shaping, cytoskeletal remodeling, and the mechanotransduction of external forces into biochemical signals. These functions are abrogated in lamin A/C-deficient mouse embryonic fibroblasts that recapitulate the defective nuclear organization of laminopathies, featuring disruption of the actin cap. However, how nuclear lamin A/C mediates the ability of the actin cap to regulate nuclear morphology remains unclear. Here, we show that lamin A/C expressing cells can form an actin cap to resist nuclear deformation in response to physiological mechanical stresses. This study reveals how the nuclear lamin A/C-mediated formation of the perinuclear apical actin cables protects the nuclear structural integrity from extracellular physical disturbances. Our findings highlight the role of the physical interactions between the cytoskeletal network and the nucleus in cellular mechanical homeostasis.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE