Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Selective photonic sintering of Ag flakes embedded in silicone elastomers to fabricate stretchable conductors

Authors
Oh, YoungsuYoon, In SeonLee, ChihakKim, Sun HongJu, Byeong-KwonHong, Jae-Min
Issue Date
7-12월-2017
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.5, no.45, pp.11733 - 11740
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY C
Volume
5
Number
45
Start Page
11733
End Page
11740
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81200
DOI
10.1039/c7tc03828c
ISSN
2050-7526
Abstract
Stretchable conductors have recently attracted much attention because of rapid developments in wearable and deformable electronics. Conductors are one of the essential components of electronic devices. A photonic sintering process with intense pulsed light from a xenon lamp is used for sintering printed ink to fabricate conductors, without damaging the substrate. However, it is difficult to achieve the most desired properties such as high conductivity and mechanical stretchability in stretchable conductors fabricated by photonic sintering. Here, highly stretchable conductors are developed by the selective sintering of conductive materials embedded in silicone elastomers, overcoming this drawback. The conductors are composed of conductive Ag flakes and elastomeric Ecoflex. Photonic sintering generates conductive paths without damaging the transparent elastomer. As a result, a stretchability of 500% is achieved without the need for any structural designs. Furthermore, a wireless power transfer circuit incorporating the conductors was successfully applied to operate a light emitting diode wirelessly. This approach opens up the possibility of developing new types of stretchable and deformable electronics for future applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ju, Byeong kwon photo

Ju, Byeong kwon
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE