Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Molecular Tailoring of Poly(styrene-b-methyl methacrylate) Block Copolymer Toward Perpendicularly Oriented Nanodomains with Sub-10 nm Features

Authors
Woo, SanghoonJo, SeongjunRyu, Du YeolChoi, Soo-HyungChoe, YoungsonKhan, AnzarHuh, JuneBang, Joona
Issue Date
12월-2017
Publisher
AMER CHEMICAL SOC
Citation
ACS MACRO LETTERS, v.6, no.12, pp.1386 - 1391
Indexed
SCIE
SCOPUS
Journal Title
ACS MACRO LETTERS
Volume
6
Number
12
Start Page
1386
End Page
1391
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81262
DOI
10.1021/acsmacrolett.7b00856
ISSN
2161-1653
Abstract
We demonstrate a novel approach for fabricating vertically orientated, sub-10 nm, block copolymer (BCP) nano domains on a substrate via molecular tailoring of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) BCP, one of the most widely used BCPs for nanopatterning. The idea is to incorporate a short middle block of self-attracting poly(methacrylic acid) (PMAA) between the PS and PMMA blocks, where the PMAA middle block promotes phase separation between PS and PMMA, while maintaining the domain orientation perpendicular to the substrate. The designed PS-b-PMAA-b-PMMA triblock copolymers, which were synthesized via well-controlled anionic polymerization, exhibited order disorder transition temperatures higher than that of pristine PS-b-PMMA BCPs, indicating the promotion of phase separation by the middle PMAA block. For PS-b-PMAA-b-PMMA BCPs with total molecular weights of 21 and 18 kg/mol, the domain spacing corresponds to 19.3 and 16.7 nm, respectively, allowing us to fabricate sub -10 nm nanodomain structures. More importantly, it was demonstrated that the PMAA middle block, which has a higher surface energy than PS and PMMA, does not significantly alter lateral concentration fluctuations, which are responsible for phase-separation in the lateral direction. This enabled the vertical orientation of microdomains with sub-10 nm feature size on a PS-r-PMMA neutral surface without an additional neutral top layer. We anticipate that this approach provides an important platform for next-generation lithography and nanopatterning applications that require sub -10 nm features over large areas with simple process and reduced cost.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE