Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Synthesis of a novel magnetic Fe3O4/gamma-Al2O3 hybrid composite using electrode-alternation technique for the removal of an azo dye

Authors
Jung, Kyung-WonChoi, Brian HyunAhn, Kyu-HongLee, Sang-Hyup
Issue Date
30-Nov-2017
Publisher
ELSEVIER SCIENCE BV
Keywords
Electrochemical synthesis; Magnetic adsorbent; Magnetite; Gamma alumina; Acid black 1
Citation
APPLIED SURFACE SCIENCE, v.423, pp.383 - 393
Indexed
SCIE
SCOPUS
Journal Title
APPLIED SURFACE SCIENCE
Volume
423
Start Page
383
End Page
393
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81489
DOI
10.1016/j.apsusc.2017.06.172
ISSN
0169-4332
Abstract
A novel magnetic adsorbent of Fe3O4/gamma-Al2O3 hybrid composite (denoted as M-Fe/Al-H) was developed electrochemically via a sequential application of iron and aluminum electrodes in a one-pot fashion, which called here as electrode-alternation technique, followed by pyrolysis. Physical and chemical properties of the prepared adsorbents were characterized and their feasibility towards the removal of di-anionic azo dye Acid Black 1 (AB1) was assessed. Textural and structural characterization revealed that the prepared M-Fe/Al-H possesses superior properties than those of M-Fe (sole usage of iron electrode), which may improve the adsorption capacity. Kinetics revealed that the adsorption equilibrium was reached within 12 h with approximately 90% of the equilibrium adsorption capacity within the first 3 h. Comprehensive analysis using the pseudo-second order and intraparticle diffusion models indicated that the dominant mechanism of the reaction is film diffusion with intraparticle diffusion being the rate determining step. The adsorption equilibrium isotherm data were best represented by the Sips isotherm model, which found to be approximately 1501, 1786, and 1959 mg/g at 283, 293, and 303 K, respectively. The exceptional performance as well as its ease of separation allows M-Fe/Al-H to be a promising candidate as an effective for azo dye removal from various aqueous medium. (C) 2017 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE