Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mechanical strain-induced defect states in amorphous silicon channel layers of thin-film transistors

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Minsuk-
dc.contributor.authorOh, Hyungon-
dc.contributor.authorPark, Sukhyung-
dc.contributor.authorCho, Kyoungah-
dc.contributor.authorKim, Sangsig-
dc.date.accessioned2021-09-02T23:12:23Z-
dc.date.available2021-09-02T23:12:23Z-
dc.date.created2021-06-19-
dc.date.issued2017-11-01-
dc.identifier.issn0040-6090-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/81605-
dc.description.abstractIn this study, we examined mechanical strain-induced defect states in hydrogenated amorphous silicon (a-Si: H) channel layers of thin-film transistors (TFTs) bent with a curvature radius of 18mm. When strain is applied to the TFTs, our devices feature strain-induced variations in threshold voltage (similar to 1.47 V), subthreshold swing (similar to 0.36 V/dec), and field-effect mobility (similar to 0.031 cm(2) V-1 s(-1)). The electrical characteristics of a-Si: H TFTs on bendable substrates under mechanical strain are explained by the variation in the density of states (DOS) of defects in the channel layers. Our simulation work on the DOS in the a-Si: H channel layers under mechanical strain reveals that the mechanical strain causes not only the deformation of the density of mid-gap defect states but also an increase in the band-tail states within the band gap. (C) 2017 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.titleMechanical strain-induced defect states in amorphous silicon channel layers of thin-film transistors-
dc.typeArticle-
dc.contributor.affiliatedAuthorCho, Kyoungah-
dc.contributor.affiliatedAuthorKim, Sangsig-
dc.identifier.doi10.1016/j.tsf.2017.01.049-
dc.identifier.scopusid2-s2.0-85010931284-
dc.identifier.wosid000413805700010-
dc.identifier.bibliographicCitationTHIN SOLID FILMS, v.641, pp.43 - 46-
dc.relation.isPartOfTHIN SOLID FILMS-
dc.citation.titleTHIN SOLID FILMS-
dc.citation.volume641-
dc.citation.startPage43-
dc.citation.endPage46-
dc.type.rimsART-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordAuthorThin-film transistors-
dc.subject.keywordAuthorDensity of states-
dc.subject.keywordAuthorMechanical strain-
dc.subject.keywordAuthorFlexible-
dc.subject.keywordAuthorBendability-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sang sig photo

Kim, Sang sig
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE