Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Single Component Organic Solar Cells Based on Oligothiophene-Fullerene Conjugate

Authors
Thanh Luan NguyenLee, Tack HoGautam, BhojPark, Song YiGundogdu, KenanKim, Jin YoungWoo, Han Young
Issue Date
19-10월-2017
Publisher
WILEY-V C H VERLAG GMBH
Keywords
charge transfer; energy loss; organic photovoltaics; single component solar cells; transient absorption spectroscopy
Citation
ADVANCED FUNCTIONAL MATERIALS, v.27, no.39
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
27
Number
39
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81879
DOI
10.1002/adfm.201702474
ISSN
1616-301X
Abstract
A new donor (D)-acceptor (A) conjugate, benzodithiophene-rhodanine-[6,6]-phenyl-C-61 butyric acid methyl ester (BDTRh-PCBM) comprising three covalently linked blocks, one of p-type oligothiophene containing BDTRh moieties and two of n-type PCBM, is designed and synthesized. A single component organic solar cell (SCOSC) fabricated from BDTRh-PCBM exhibits the power conversion efficiency (PCE) of 2.44% and maximum external quantum efficiency of 46%, which are the highest among the reported efficiencies so far. The SCOSC device shows efficient charge transfer (CT, approximate to 300 fs) and smaller CT energy loss, resulting in the higher open-circuit voltage of 0.97 V, compared to the binary blend (BDTRh:PCBM). Because of the integration of the donor and acceptor in a single molecule, BDTRh-PCBM has a specific D-A arrangement with less energetic disorder and reorganization energy than blend systems. In addition, the SCOSC device shows excellent device and morphological stabilities, showing no degradation of PCE at 80 degrees C for 100 h. The SCOSC approach may suggest a great way to suppress the large phase segregation of donor and acceptor domains with better morphological stability compared to the blend device.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE