Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Robust Fusion of Diffusion MRI Data for Template Construction

Authors
Yang, ZhanlongChen, GengShen, DinggangYap, Pew-Thian
Issue Date
11-10월-2017
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.7
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
7
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81918
DOI
10.1038/s41598-017-13247-w
ISSN
2045-2322
Abstract
Construction of brain templates is generally carried out using a two-step procedure involving registering a population of images to a common space and then fusing the aligned images to form a template. In practice, image registration is not perfect and simple averaging of the images will blur structures and cause artifacts. In diffusion MRI, this is further complicated by intra-voxel inter-subject differences in fiber orientation, fiber configuration, anisotropy, and diffusivity. In this paper, we propose a method to improve the construction of diffusion MRI templates in light of inter-subject differences. Our method involves a novel q-space (i.e., wavevector space) patch matching mechanism that is incorporated in a mean shift algorithm to seek the most probable signal at each point in q-space. Our method relies on the fact that the mean shift algorithm is a mode seeking algorithm that converges to the mode of a distribution and is hence robust to outliers. Our method is therefore in effect seeking the most probable signal profile at each voxel given a distribution of signal profiles. Experimental results show that our method yields diffusion MRI templates with cleaner fiber orientations and less artifacts caused by intersubject differences in fiber orientation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE