Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Performance Lithium-Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt

Authors
Ahn, Su MiSuk, JungdonKim, Do YoubKang, YongkuKim, Hwan KyuKim, Dong Wook
Issue Date
10월-2017
Publisher
WILEY
Keywords
lithium nitrate; lithium oxygen batteries; NO2-/NO2 redox reaction; tetramethylene sulfone
Citation
ADVANCED SCIENCE, v.4, no.10
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED SCIENCE
Volume
4
Number
10
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/82093
DOI
10.1002/advs.201700235
ISSN
2198-3844
Abstract
To fabricate a sustainable lithium-oxygen (Li-O-2) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO3) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV-DEMS study confirms that the TMS-LiNO3 electrolyte efficiently produces NO2-, which initiates a redox shuttle reaction. Interestingly, this NO2-/NO2 redox reaction derived from the LiNO3 salt is not very effective in solvents other than TMS. Compared with other common Li-O-2 solvents, TMS seems optimum solvent for the efficient use of LiNO3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO2-/NO2 redox reaction, which results in a high-performance Li-O-2 battery.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE