Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Analytical and experimental studies to obtain electrical resistivity in a small-scaled laboratory test

Authors
Taiwo, Saheed MayowaLee, Jong-SubYoon, Hyung-Koo
Issue Date
9월-2017
Publisher
SOC EXPLORATION GEOPHYSICISTS
Citation
GEOPHYSICS, v.82, no.5, pp.E267 - E275
Indexed
SCIE
SCOPUS
Journal Title
GEOPHYSICS
Volume
82
Number
5
Start Page
E267
End Page
E275
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/82412
DOI
10.1190/GEO2016-0491.1
ISSN
0016-8033
Abstract
Electrical resistivity surveys have been used to investigate soil behavior at the microscale, and thus they require a method for obtaining accurate electrical resistivity. The previously suggested geometric factor ignores the dimensions of the electrode due to the scale effect present in field conditions, thus necessitating a more appropriate method to capture reliable electrical resistivity for laboratory tests. Our objective is to suggest an analytical solution to obtain reliable electrical resistivity in laboratory testing. Models are verified through laboratory tests and statistical methods. The relationship between electrical resistance and electrical resistivity is analytically defined by Ohm's law and Gauss's flux theorem. Consequently, the underlying importance of electrode capacitance including electrode length and diameter for estimating electrical resistivity is evaluated. In addition to the electrical resistivity estimated based on Ohm's law (EOL), capacitance based on the single-electrode model (CSM) and the multiple-electrode model (CMM), electrical resistivity based on the conventional calibration method is also addressed. Four-equally spaced electrode probe system is designed to measure the electrical resistance. The estimated electrical resistivity based on each model (EOL, CSM, CMM, and 2 pi sR) is compared with the electrical resistivity estimated from the conductivity meter to verify the suggested models. The electrical resistivity estimated from EOL shows high reliability. Our results underline the significance of EOL model in the conversion of measured electrical resistance into electrical resistivity in laboratory tests.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, Jong Sub photo

LEE, Jong Sub
공과대학 (건축사회환경공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE