Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A new method for the real-time quantification of airborne biological particles using a coupled inertial aerosol system with in situ fluorescence imaging

Authors
Choi, JeonganKang, Joon SangHong, Seung ChanBae, Gwi-NamJung, Jae Hee
Issue Date
6월-2017
Publisher
ELSEVIER SCIENCE SA
Keywords
Bioaerosol; Fluorescence; Inertial impactor; Bio-imaging system
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.244, pp.635 - 641
Indexed
SCIE
SCOPUS
Journal Title
SENSORS AND ACTUATORS B-CHEMICAL
Volume
244
Start Page
635
End Page
641
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/83204
DOI
10.1016/j.snb.2017.01.055
ISSN
0925-4005
Abstract
We describe the integration of an aerosol inertial impactor with in situ fluorescence imaging for the real-time detection and monitoring of airborne biological particles. Airborne particles were continuously collected on a fluorescent dye-containing agarose gel, and a mini-fluorescence microscope was used to produce in situ fluorescence particle images. Concentrations of size-segregated and dye-stained particles were then measured in real time upon deposition of airborne biological particles on the agarose gel substrate. To evaluate system performance, airborne bacterial particles from Escherichia coli were introduced onto the impactor (termed Bio-impactor) at various air flow rates and collection times. The particle cut-off diameter (d(50)) was controlled by adjusting sample flow rate so that a sample flow rate of 10 L/min produced a d(50) of similar to 0.84 mu m, which efficiently collected airborne E. coli particles. Our Bio-impactor system allows for the automated fluorescence imaging of collected particles, providing in situ information about fluorescence intensity at regular time intervals. We compared results from our system with those obtained using a colony counting method; our results demonstrated a clear correlation (R-2 = 0.9536) between system response and expected particle counts. Our novel impactor system could provide an inexpensive, simple, and portable method of real-time bioaerosol quantification. (C) 2017 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE