Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye-Sensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications

Authors
Kang, Sung HoJeong, Myung JinEom, Yu KyungChoi, In TaekKwon, Seung MoYoo, YoungjunKim, JeonghoKwon, JeongPark, Jong HyeokKim, Hwan Kyu
Issue Date
5-4월-2017
Publisher
WILEY-V C H VERLAG GMBH
Keywords
D-π-A structure; dye-sensitized solar cells; porphyrin; structure–performance relationship; tandem solar cells
Citation
ADVANCED ENERGY MATERIALS, v.7, no.7
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED ENERGY MATERIALS
Volume
7
Number
7
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/83779
DOI
10.1002/aenm.201602117
ISSN
1614-6832
Abstract
Zn(II)-porphyrin sensitizers, coded as SGT-020 and SGT-021, are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer-based dye-sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure-performance relationship in the platform of porphyrin-triple bond-benzothiadiazole-acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315, the power conversion efficiency (PCE) is enhanced with the increased short-circuit current (J(sc)) and open-circuit voltage (V-oc), due to the improved light-harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT-021, whose PCE is much higher than the 11.70% PCE for SM315. To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high V-oc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon-to-current efficiency is achieved for solar water splitting.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE