Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Literature-based condition-specific miRNA-mRNA target prediction

Authors
Oh, MinsikRhee, SungminMoon, Ji HwanChae, HeejoonLee, SunwonKang, JaewooKim, Sun
Issue Date
31-Mar-2017
Publisher
PUBLIC LIBRARY SCIENCE
Citation
PLOS ONE, v.12, no.3
Indexed
SCIE
SCOPUS
Journal Title
PLOS ONE
Volume
12
Number
3
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84091
DOI
10.1371/journal.pone.0174999
ISSN
1932-6203
Abstract
miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA,a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Computer Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Jae woo photo

Kang, Jae woo
Department of Computer Science and Engineering
Read more

Altmetrics

Total Views & Downloads

BROWSE