Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Defects and Charge-Trapping Mechanisms of Double-Active-Layer In-Zn-O and Al-Sn-Zn In-O Thin-Film Transistors

Authors
Goh, YounginKim, TaehoYang, Jong-HeonChoi, Ji HunHwang, Chi-SunCho, Sung HaengJeon, Sanghun
Issue Date
22-3월-2017
Publisher
AMER CHEMICAL SOC
Keywords
oxide semiconductor; double active layer; thin-film transistor; Al-Sn-Zn-In-O; charge trapping; defect density; negative oxygen ion effect
Citation
ACS APPLIED MATERIALS & INTERFACES, v.9, no.11, pp.9271 - 9279
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
9
Number
11
Start Page
9271
End Page
9279
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84123
DOI
10.1021/acsami.7b01533
ISSN
1944-8244
Abstract
Active matrix organic light-emitting diodes (AMOLEDs) are considered to be a core component of next- generation display technology, which can he used for wearable and flexible devices. Reliable thin-film transistors (TFTs) with high mobility are required to drive AMOLEDs. Recently, amorphous oxide TFTs, due to their high mobility, have been considered as excellent substitutes for driving AMOLEDs. However, the device instabilities of high-mobility oxide TFTs 0 have remained a key issue to be used in production. In this paper, 0 we present the charge-trapping and device instability mechanisms of high-mobility oxide TFTs with double active layers, using In Zn-O (IZO) and Al-doped Sn-Zn-In-O (ATZIO) with various interfacial IZO thicknesses (0-6 nm). To this end, we employed microsecond fast current voltage (I-V), single-pulsed I-V, transient current, and discharge current analysis. These alternating-current device characterization methodologies enable the extraction of various trap parameters and defect densities as well as the understanding of dynamic charge transport in double-active-layer TFTs. The results show that the number of defect sites decreases with an increase in the interfacial IZO thickness. From these results, we conclude that the interfacial IZO layer plays a crucial role in minimizing charge trapping in ATZIO TFTs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Display Convergence in Division of Display and Semiconductor Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE