Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Origin of high Coulombic loss during sodiation in Na-Sn battery

Authors
Byeon, Young-WoonChoi, Yong-SeokAhn, Jae-PyoungLee, Jae-Chul
Issue Date
1-3월-2017
Publisher
ELSEVIER SCIENCE BV
Keywords
Sodium-ion battery; Sodiation; Phase transition; Electrical resistivity; Ab initio calculation; Pseudogap
Citation
JOURNAL OF POWER SOURCES, v.343, pp.513 - 519
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF POWER SOURCES
Volume
343
Start Page
513
End Page
519
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84186
DOI
10.1016/j.jpowsour.2017.01.089
ISSN
0378-7753
Abstract
Electrochemical sodiation is performed in crystalline Sn foil using in situ scanning electron microscopy (SEM) to simultaneously measure the changes in the electrical resistivity and volume of the Sn anode in a Na-Sn battery. We observe that sodiation causes an increase in the Sn anode resistivity by six orders of magnitude. Ab initio molecular dynamics simulations of the Na-Sn alloy system demonstrate that the increased resistivity of the anode is caused by the formation of an electrically resistive amorphous NaSn phase (a-NaSn) with a pseudogap. It is also observed that the formation of a-NaSn is always accompanied by a large volume expansion of similar to 200%, causing the development of residual tensile stress. The residual stress in turn alters the electronic structure of the a-NaSn phase, further increasing the resistivity of aNaSn and thus decreasing the energy efficiency of the Na-Sn battery. (C) 2017 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jae chul photo

Lee, Jae chul
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE