Electrical and optical characteristics of transparent conducting Si-doped. ZnO/hole-patterned Ag/Si-doped ZnO multilayer films
- Authors
- Kim, Jun Ho; Im, Hyeong-Seop; Hwang, Dae-Woong; Kim, Sun-Kyung; Bae, Dukkyu; Yoo, Young-Zo; Lee, Kyeong-Seok; Seong, Tae-Yeon
- Issue Date
- 3월-2017
- Publisher
- ELSEVIER SCI LTD
- Keywords
- Si-doped ZnO; Hole-patterned Ag layer; Transparent conducting electrode; Finite-difference time-domain simulation
- Citation
- CERAMICS INTERNATIONAL, v.43, no.4, pp.3693 - 3697
- Indexed
- SCIE
SCOPUS
- Journal Title
- CERAMICS INTERNATIONAL
- Volume
- 43
- Number
- 4
- Start Page
- 3693
- End Page
- 3697
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/84210
- DOI
- 10.1016/j.ceramint.2016.11.213
- ISSN
- 0272-8842
- Abstract
- Hole-patterned Ag layers were first used to form Si-doped ZnO (SZO)/hole-patterned Ag/SZO multilayers and their optical and electrical properties were characterized. Unlike conventional oxide/metal/oxide multilayers, all samples exhibited two characteristic features: (i) a sinusoidal wavelength dependence of the transmittance with double maxima, and (ii) undulation in the visible transmittance, but not in the infrared transmittance. With increasing SZO thickness, the transmittance maxima were red-shifted, and the visible transmittance window widened. The carrier concentration decreased from 7.42x10(22) to 2.4x10(22) cm(-3), and the sheet resistances varied from 7 to 10 Omega/sq with increasing SZO thickness. Haacke's figure of merit (FOM) was calculated for the SZO-based multilayer films. The 40 nm-thick SZO multilayers had the highest FOM of 15.9x10(-3) Omega(-1). Finite difference time-domain (FDTD) simulations were undertaken to interpret the measured transmittance. Based on the FDTD simulations, the undulating transmittance was attributed to surface plasmon-polaritons.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.