Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrical and optical characteristics of transparent conducting Si-doped. ZnO/hole-patterned Ag/Si-doped ZnO multilayer films

Authors
Kim, Jun HoIm, Hyeong-SeopHwang, Dae-WoongKim, Sun-KyungBae, DukkyuYoo, Young-ZoLee, Kyeong-SeokSeong, Tae-Yeon
Issue Date
3월-2017
Publisher
ELSEVIER SCI LTD
Keywords
Si-doped ZnO; Hole-patterned Ag layer; Transparent conducting electrode; Finite-difference time-domain simulation
Citation
CERAMICS INTERNATIONAL, v.43, no.4, pp.3693 - 3697
Indexed
SCIE
SCOPUS
Journal Title
CERAMICS INTERNATIONAL
Volume
43
Number
4
Start Page
3693
End Page
3697
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84210
DOI
10.1016/j.ceramint.2016.11.213
ISSN
0272-8842
Abstract
Hole-patterned Ag layers were first used to form Si-doped ZnO (SZO)/hole-patterned Ag/SZO multilayers and their optical and electrical properties were characterized. Unlike conventional oxide/metal/oxide multilayers, all samples exhibited two characteristic features: (i) a sinusoidal wavelength dependence of the transmittance with double maxima, and (ii) undulation in the visible transmittance, but not in the infrared transmittance. With increasing SZO thickness, the transmittance maxima were red-shifted, and the visible transmittance window widened. The carrier concentration decreased from 7.42x10(22) to 2.4x10(22) cm(-3), and the sheet resistances varied from 7 to 10 Omega/sq with increasing SZO thickness. Haacke's figure of merit (FOM) was calculated for the SZO-based multilayer films. The 40 nm-thick SZO multilayers had the highest FOM of 15.9x10(-3) Omega(-1). Finite difference time-domain (FDTD) simulations were undertaken to interpret the measured transmittance. Based on the FDTD simulations, the undulating transmittance was attributed to surface plasmon-polaritons.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SEONG, TAE YEON photo

SEONG, TAE YEON
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE