Switching of Photonic Crystal Lasers by Graphene
- Authors
- Hwang, Min-Soo; Kim, Ha-Reem; Kim, Kyoung-Ho; Jeong, Kwang-Yong; Park, Jin-Sung; Choi, Jae-Hyuck; Kang, Ju-Hyung; Lee, Jung Min; Park, Won Il; Song, Jung-Hwan; Seo, Min-Kyo; Park, Hong-Gyu
- Issue Date
- 3월-2017
- Publisher
- AMER CHEMICAL SOC
- Keywords
- Graphene; photonic crystals; nanolasers; switching
- Citation
- NANO LETTERS, v.17, no.3, pp.1892 - 1898
- Indexed
- SCIE
SCOPUS
- Journal Title
- NANO LETTERS
- Volume
- 17
- Number
- 3
- Start Page
- 1892
- End Page
- 1898
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/84250
- DOI
- 10.1021/acs.nanolett.6b05207
- ISSN
- 1530-6984
- Abstract
- Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge. In this work, we demonstrate on/off switching of single- and double-cavity photonic crystal lasers by electrical gating of a monolayer graphene sheet on top of photonic crystal cavities. The optical loss of graphene was controlled by varying the gate voltage V-g, with the ion gel atop the graphene sheet. First, the fundamental properties of graphene were investigated through the transmittance measurement and numerical simulations. Next, optically pumped lasing was demonstrated for a graphene-integrated single photonic crystal cavity at V-g below-0.6 V, exhibiting a low lasing threshold of -4801 mu W, whereas lasing was not observed at V-g above -0.6 V owing to the intrinsic optical loss of graphene. Changing quality factor of the graphene-integrated photonic crystal cavity enables or disables the lasing operation. Moreover, in the double-cavity photonic crystal lasers with graphene, switching of individual cavities with separate graphene sheets was achieved, and these two lasing actions were controlled independently despite the close distance of -2.2 mu m between adjacent cavities. We believe that our simple and practical approach for switching in graphene-integrated active photonic devices will pave the way toward designing high-contrast and ultracompact photonic integrated circuits.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Science > Department of Physics > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.