Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Correlation between interlayer thickness and device performance in blue phosphorescent organic light emitting diodes with a quantum well structure

Authors
Rhee, Sang HoKim, Chang SuSong, MyungkwanRyu, Seung Yoon
Issue Date
3월-2017
Publisher
ELSEVIER SCIENCE BV
Keywords
Quantum well structure; Interlayer; Recombination zone; Phosphorescent OLEDs; Charge balance; Exciton density
Citation
ORGANIC ELECTRONICS, v.42, pp.343 - 347
Indexed
SCIE
SCOPUS
Journal Title
ORGANIC ELECTRONICS
Volume
42
Start Page
343
End Page
347
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84357
DOI
10.1016/j.orgel.2016.12.056
ISSN
1566-1199
Abstract
We systematically examined the effects of interlayer (ITL) thickness variation in an emission layer (EML) on electrical and optical characteristics of blue phosphorescent organic light-emitting diodes. The EML consisted of a quantum well structure using a hole transport material 1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC) as an ITL This ITL facilitated the confinement of charge carriers in the recombination zone (RZ), adjusted the charge carrier balance in the EML, and prevented the triplet exciton loss to adjacent transport layers. The thickness variation in the ITL greatly influenced the size and location of the RZ and the exciton density (ED), which is related to charge balance and excitob diffusion in the EML. A micro-cavity effect around 500 nm and the corresponding redshift/blueshift in the electroluminescent spectrum arose from different ITL thicknesses. Remarkably, the device having a 5-nm-thick TAPC ITL showed better current and power efficiencies than those of any other devices because of the rearrangement of the locations of excitons and ED through control of the hole/electron charge density. (C) 2016 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Applied Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE