Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Comparative Biaxial Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Panels Using Two Different Test and Placement Methods

Authors
Yoo, Doo-YeolBanthia, NemkumarZi, GoangseupYoon, Young-Soo
Issue Date
Mar-2017
Publisher
AMER SOC TESTING MATERIALS
Keywords
ultra-high-performance fiber-reinforced concrete; fiber length; placement method; biaxial flexure; fiber distribution characteristics
Citation
JOURNAL OF TESTING AND EVALUATION, v.45, no.2, pp.624 - 641
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF TESTING AND EVALUATION
Volume
45
Number
2
Start Page
624
End Page
641
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84361
DOI
10.1520/JTE20150275
ISSN
0090-3973
Abstract
In order to investigate the effects of fiber length, placement method, and test method on the biaxial flexural behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC), several UHPFRC panels with two different fiber lengths (L-f of 13 and 19.5mm) were fabricated using two different placement methods (placing concrete at the center and the edge) and were then tested by two different test methods (ASTM C1550-12a and a novel biaxial flexure test (BFT)). Image analysis was also performed to quantitatively investigate the fiber distribution characteristics according to the fiber length and placement method and to thoroughly analyze the experimental results. The first cracking strength and corresponding toughness were found to be insignificantly influenced by the fiber length, placement method, and test method, but the panels with longer fibers and with concrete placed at the center (in the maximum moment region) were found to have higher biaxial flexural strength, deflection capacity, and toughness after a deflection of 2.5mm (d2.5). The panels tested by the BFT method showed lower flexural strength, more cracks with a random distribution, and higher deviation in flexural performances than those tested by ASTM C1550. These test results were verified by evaluating the fiber distribution characteristics (i.e., the number of fibers per unit area, fiber orientation, and fiber dispersion) at localized crack surfaces by using the image analysis technique.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ZI, Goang seup photo

ZI, Goang seup
College of Engineering (School of Civil, Environmental and Architectural Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE