Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes

Authors
Kim, Min-wooYoon, HyunOhm, Tae YoonJo, Hong SeokAn, SeongpilChoi, Sung KyuPark, HyunwoongAl-Deyab, Salem S.Min, Byoung KounSwihart, Mark T.Yoon, Sam S.
Issue Date
2월-2017
Publisher
ELSEVIER SCIENCE BV
Keywords
Cupric oxide nanofibers; Photocathode; Water splitting; Photocurrent density; Atomic layer deposition
Citation
APPLIED CATALYSIS B-ENVIRONMENTAL, v.201, pp.479 - 485
Indexed
SCIE
SCOPUS
Journal Title
APPLIED CATALYSIS B-ENVIRONMENTAL
Volume
201
Start Page
479
End Page
485
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84501
DOI
10.1016/j.apcatb.2016.08.058
ISSN
0926-3373
Abstract
We report the fabrication and performance of a CuO/ZnO/TiO2 nanofiber photocathode that achieved a photocurrent density (PCD) of -4.1 mA/cm(2), which is among the highest PCD values reported for a copper oxide based photocathode without a co-catalyst. To prepare this photocathode, we coated electrospun nanofibers with copper by electroplating, then dried them in air to produce cuprous oxide (Cu2O) nanofibers. Further annealing in air converted them to cupric oxide (CuO). The CuO nanofibers exhibit nanotextured surfaces, resembling the skin of the "thorny-devil" lizard of Australia, providing high accessible surface area for photocatalysis. These CuO nanofibers were uniformly coated with thin ZnO and TiO2 layers by atomic layer deposition (ALD) to promote electron migration from CuO to TiO2 and protect the CuO from corrosion. The nanofibrous photocathode films were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, as well as by incident photon-to-electron conversion efficiency measurements. (C) 2016 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE