Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

Authors
Kim, Seong-HwanHuh, Joo-YoulKim, Myung-SooKim, Jong-Sang
Issue Date
2월-2017
Publisher
CORROSION SCIENCE SOC KOREA
Keywords
oxidation; transformation-induced plasticity steel; oxidation-reduction scheme; oxygen partial pressure; amorphous Si oxide
Citation
CORROSION SCIENCE AND TECHNOLOGY-KOREA, v.16, no.1, pp.15 - 22
Indexed
KCI
OTHER
Journal Title
CORROSION SCIENCE AND TECHNOLOGY-KOREA
Volume
16
Number
1
Start Page
15
End Page
22
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84778
DOI
10.14773/cst.2017.16.1.15
ISSN
1598-6462
Abstract
An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure (PO2) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at 700 degrees C under atmospheres with various PO2 values. Irrespective of PO2, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a Fe2O3/Fe3O4 bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as (Fe, Mn)(2)O-3. The multilayered structure of (Fe, Mn)(2)O-3/Fe2O3/Fe3O4/amorphous Si-Mn-O remained even after extended oxidizing at 700 degrees C for 60 s. Fe2O3 was the dominantly growing oxide phase in the scale. The enhanced growth rate of Fe2O3 with increasing PO2 resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Huh, Joo Youl photo

Huh, Joo Youl
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE