Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of Thermal Charging of Hydrogen on the Microstructure of Metastable Austenitic Stainless Steel

Authors
Kim, Han-JinPhaniraj, M. P.Kim, Ju-HeonLee, Young-SuKim, Dong-IkSuh, Jin-YooLee, JoonhoShim, Jae-HyeokPark, Seong-Jun
Issue Date
2월-2017
Publisher
WILEY-V C H VERLAG GMBH
Keywords
hydrogen embrittlement; martensitic transformation; ductility and fracture; 304 stainless steel
Citation
STEEL RESEARCH INTERNATIONAL, v.88, no.2, pp.243 - 251
Indexed
SCIE
SCOPUS
Journal Title
STEEL RESEARCH INTERNATIONAL
Volume
88
Number
2
Start Page
243
End Page
251
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/84849
DOI
10.1002/srin.201600063
ISSN
1611-3683
Abstract
The tensile behavior of hydrogen-charged 304-type austenitic stainless steel, with and without prestrain, is investigated. The specimens are thermally charged with hydrogen in 15MPa hydrogen gas at 300 degrees C for 72h. Tensile behavior of the specimen is compared with the specimen aged in vacuum at 300 degrees C. The effect of the charging condition on the stability of microstructure is determined by characterizing prestrained specimens before and after charging. The hydrogen content in the specimens is determined using thermal desorption spectroscopy (TDS). Analysis of X-ray diffraction (XRD) data and electron backscattered diffraction (EBSD) shows that the fraction of martensite increases after charging in hydrogen by 5-10%. The fracture surfaces of the uncharged and charged specimens are examined for characteristic features. Flow stress and ductility of the charged and prestrained and charged specimens are discussed in terms of the martensite fraction and hydrogen content.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, Joon ho photo

LEE, Joon ho
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE