Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mono-dispersed DDR zeolite particles by seeded growth and their CO2, N-2, and H2O adsorption properties

Authors
Kim, EunjooLim, KyunghwanLee, TaeheeHa, Kyoung-SuHan, Doug-YoungNam, JaewookChoi, NakwonCho, Il-JooYip, Alex C. K.Choi, Jungkyu
Issue Date
15-12월-2016
Publisher
ELSEVIER SCIENCE SA
Keywords
All-silica DDR (Si-DDR); Seeded growth; Adsorption; CO2/N-2 separation; Hydrophobicity; DDR catalysts
Citation
CHEMICAL ENGINEERING JOURNAL, v.306, pp.876 - 888
Indexed
SCIE
SCOPUS
Journal Title
CHEMICAL ENGINEERING JOURNAL
Volume
306
Start Page
876
End Page
888
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/86525
DOI
10.1016/j.cej.2016.08.025
ISSN
1385-8947
Abstract
All-silica DDR (decadodecasil 3R, Si-DDR) zeolites with a pore size of 0.36 x 0.44 nm(2) are highly desirable for separating CO2 (0.33 nm) from N-2 (0.364 nm) on the basis of the size difference. Despite their potential as CO2 separators, the synthetic protocols that allow for the mono-dispersed DDR zeolite particles have not been systematically investigated. Here, we found that a seeded growth of irregular Si-DDR particles, obtained by non-seeded growth, resulted in mono-dispersed, diamond-like Si-DDR particles. Regardless of the origin of seeds, the size of the Si-DDR particles was decreased with increasing seed amount. Adsorption isotherms of CO2, N-2, and H2O, the three main components in the flue gas from coal-fired power plants, in Si-DDR particles and the corresponding heats of adsorption (similar to 25-27, 1522, and similar to 32-40 kJ.mol(-1), respectively) were comparable and in good agreement with the literature data. The resulting CO2/N-2 ideal sorption and permeation selectivities were estimated to be similar to 15.3-18.0 and similar to 7.7-9.0 at 303 K, respectively, indicating that Si-DDR zeolites can serve as adsorbents and membranes for CO2/N-2 separations. In addition, we demonstrated that Al atoms could be incorporated into the DDR framework via seeded growth. The adsorption of H2O depends considerably on the concentration of defects (mainly OH groups) present in the Si-DDR framework and more strongly on Al species incorporated into the DDR framework. (C) 2016 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Jung kyu photo

Choi, Jung kyu
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE