Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fis1 depletion in osteoarthritis impairs chondrocyte survival and peroxisomal and lysosomal function

Authors
Kim, DongkyunSong, JinsooKang, YeonhoPark, SujungKim, Yong-IlKwak, SeongaeLim, DongkwonPark, RaekilChun, Churl-HongChoe, Seong-KyuJin, Eun-Jung
Issue Date
Dec-2016
Publisher
SPRINGER HEIDELBERG
Keywords
Chondrocytes; Osteoarthritis; Zebrafish; Fis1; Lysosome; Mitochondria; Peroxisome; Apoptosis
Citation
JOURNAL OF MOLECULAR MEDICINE-JMM, v.94, no.12, pp.1373 - 1384
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MOLECULAR MEDICINE-JMM
Volume
94
Number
12
Start Page
1373
End Page
1384
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/86638
DOI
10.1007/s00109-016-1445-9
ISSN
0946-2716
Abstract
Cumulative evidence suggests the importance of organelle homeostasis in regulating metabolic functions in response to various cellular stresses. Particularly, the dynamism and health of the mitochondria-peroxisome network through fission and fusion are essential for cellular function; dysfunctional dynamism underlies the pathogenesis of several degenerative diseases including Parkinson's disease. Here, we investigated the role of Fis1 in cartilage homeostasis and its relevance to osteoarthritis (OA). We found that Fis1 is significantly suppressed in human OA chondrocytes compared to that in normal chondrocytes. Fis1 depletion through siRNA induced peroxisomal dysfunction. Moreover, Fis1 suppression altered miRNA profiles, especially those implicated in lysosomal regulation. Lysosomal destruction using LAMP-1-specific targeted nanorods or lysosomal dysfunction through chloroquine treatment resulted in enhanced chondrocyte apoptosis and/or suppression of autophagy. Accordingly, lysosomal activity and autophagy were severely decreased in OA chondrocytes despite abundant LAMP-1-positive organelles. Moreover, Fis1 morpholino-injected zebrafish embryos displayed lysosome accumulation, mitochondrial dysfunction, and peroxisome reduction. Collectively, these data suggest interconnected links among Fis1-modulated miRNA, lysosomes, and autophagy, which contributes to chondrocyte survival/apoptosis. This study represents the first functional study of Fis1 with its pathological relevance to OA. Our data suggest a new target for controlling cartilage-degenerative diseases, such as OA. Fis1 suppression in OA chondrocytes induces accumulation and inhibition of lysosomes. Fis1 suppression alters miRNAs, especially those implicated in lysosomal regulation. Lysosomal destruction results in chondrocyte apoptosis and suppression of autophagy. Fis1 depletion in zebrafish causes lysosome accumulation, mitochondrial dysfunction, and peroxisome reduction. This is the first functional study of Fis1 and its pathological relevance to OA.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE