Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis
- Authors
- Zhang, Jun; Gao, Yue; Gao, Yaozong; Munsell, Brent C.; Shen, Dinggang
- Issue Date
- 12월-2016
- Publisher
- IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
- Keywords
- Alzheimer' s disease (AD); regression forest; landmark detection; magnetic resonance imaging (MRI)
- Citation
- IEEE TRANSACTIONS ON MEDICAL IMAGING, v.35, no.12, pp.2524 - 2533
- Indexed
- SCIE
SCOPUS
- Journal Title
- IEEE TRANSACTIONS ON MEDICAL IMAGING
- Volume
- 35
- Number
- 12
- Start Page
- 2524
- End Page
- 2533
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/86701
- DOI
- 10.1109/TMI.2016.2582386
- ISSN
- 0278-0062
- Abstract
- Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Artificial Intelligence > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.