Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tunable Crosslinked Cell-Derived Extracellular Matrix Guides Cell Fate

Authors
Subbiah, RameshHwang, Mintai P.Du, PingSuhaeri, MuhammadHwang, Jun-HaHong, Jeong-HoPark, Kwideok
Issue Date
11월-2016
Publisher
WILEY-V C H VERLAG GMBH
Keywords
cell differentiation; ECM stiffness; extracellular matrix; genipin cross-linking; mechanotransduction
Citation
MACROMOLECULAR BIOSCIENCE, v.16, no.11, pp.1723 - 1734
Indexed
SCIE
SCOPUS
Journal Title
MACROMOLECULAR BIOSCIENCE
Volume
16
Number
11
Start Page
1723
End Page
1734
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/87003
DOI
10.1002/mabi.201600280
ISSN
1616-5187
Abstract
Extracellular matrix (ECM), comprised of multiple cues (chemical, physiomechanical), provides a niche for cell attachment, migration, and differentiation. Given that different cells give rise to distinct physiological milieus, the role of such microenvironmental cues on various cells has been well-studied. Particularly, the effect of various physiomechanical factors on stem cell lineage has been resolved into individual variables via ECM protein-coated polymeric systems. Such platforms, while providing a reductionist approach as a means to remove any confounding factors, unfortunately fall short of capturing the full biophysical scope of the natural microenvironment. Herein, the use of a cell-derived ECM platform is reported in which its crosslinking density is tunable; varying concentrations (0, 0.5, 1, 2% w/v) of genipin (GN), a naturally derived crosslinker with low toxicity, are used to form inter-and intrafibril crosslinks. ECM crosslinking produces GN concentration-dependent changes in ECM stiffness (<0.1-9.4 kPa), roughness (96-280 nm), and chemical composition (100-60% amine content). The effect of the various crosslinked ECM profiles on human mesenchymal stem cell differentiation, vascular morphogenesis, and cardiomyogenesis are then evaluated. Taken together, this study demonstrates that tunable crosslinked cell-derived ECM platform is capable of providing a comprehensive physiological platform, and envisions its use in future tissue engineering applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Jeong Ho photo

Hong, Jeong Ho
분자생명과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE