Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

Authors
Jin, Min-HoOh, DuckkyuPark, Ju-HyoungLee, Chun-BooLee, Sung-WookPark, Jong-SooLee, Kwan-YoungLee, Dong-Wook
Issue Date
26-9월-2016
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.6
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
6
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/87485
DOI
10.1038/srep33502
ISSN
2045-2322
Abstract
For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA -15, and achieved the excellent catalytic activity (TOF: 593 h(-1)) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Young photo

Lee, Kwan Young
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE