Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents

Authors
Lee, Jae WonPineda, Israel TorresLee, Jung HunKang, Yong Tae
Issue Date
15-9월-2016
Publisher
ELSEVIER SCI LTD
Keywords
Absorption; CO2; Nanobsorbents; Nanoparticles (SiO2, Al2O3); Regeneration
Citation
APPLIED ENERGY, v.178, pp.164 - 176
Indexed
SCIE
SCOPUS
Journal Title
APPLIED ENERGY
Volume
178
Start Page
164
End Page
176
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/87516
DOI
10.1016/j.apenergy.2016.06.048
ISSN
0306-2619
Abstract
The reduction of in the emissions of CO2, which is the representative greenhouse gas, is actively investigated worldwide because of its contribution to global warming. Energy generation processes involving the gasification of fossil fuels separate the constituent gases before combustion occurs, rendering the capture of CO2 more attainable. Generally, CO2 is captured through an absorption method by using a liquid absorbent in large scale gasification systems. According to Henry's solubility law, the absorption and regeneration processes should be operated at low and high temperatures respectively, and these require high energy consumption. As a solution, nanoparticles are added to the absorbent (methanol) to reduce energy consumption required in the absorption and regeneration processes. In this study, the absorption/regeneration performance was evaluated through a lab-scale combined CO2-absorption/regeneration system. The nanoparticles used are SiO2 and Al2O3, which are added at a 0.01 vol% concentration. In the case of the Al2O3/methanol nanoabsorbent, the performance decreases as the number of cycle increases, whereas the performance is improved steadily in the case of the SiO2/methanol nanoabsorbent. Thus, the SiO2 nanoparticles are more suitable for the combined CO2 absorption/regeneration process. Furthermore, the mass transfer enhancement mechanisms of the absorption/regeneration process according to the addition of nanoparticles are presented. (C) 2016 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Yong Tae photo

Kang, Yong Tae
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE