A Nonconventional Approach to Patterned Nanoarrays of DNA Strands for Template-Assisted Assembly of Polyfluorene Nanowires
- Authors
- Bae, Dong Geun; Jeong, Ji-Eun; Kang, Seok Hee; Byun, Myunghwan; Han, Dong-Wook; Lin, Zhiqun; Woo, Han Young; Hong, Suck Won
- Issue Date
- 17-8월-2016
- Publisher
- WILEY-V C H VERLAG GMBH
- Citation
- SMALL, v.12, no.31, pp.4254 - 4263
- Indexed
- SCIE
SCOPUS
- Journal Title
- SMALL
- Volume
- 12
- Number
- 31
- Start Page
- 4254
- End Page
- 4263
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/87804
- DOI
- 10.1002/smll.201601346
- ISSN
- 1613-6810
- Abstract
- DNA molecules have been widely recognized as promising building blocks for constructing functional nanostructures with two main features, that is, self-assembly and rich chemical functionality. The intrinsic feature size of DNA makes it attractive for creating versatile nanostructures. Moreover, the ease of access to tune the surface of DNA by chemical functionalization offers numerous opportunities for many applications. Herein, a simple yet robust strategy is developed to yield the self-assembly of DNA by exploiting controlled evaporative assembly of DNA solution in a unique confined geometry. Intriguingly, depending on the concentration of DNA solution, highly aligned nanostructured fibrillar-like arrays and well-positioned concentric ring-like superstructures composed of DNAs are formed. Subsequently, the ring-like negatively charged DNA superstructures are employed as template to produce conductive organic nanowires on a silicon substrate by complexing with a positively charged conjugated polyelectrolyte poly[9,9-bis(6'-N,N,N-trimethylammoniumhexyl) fluorene dibromide] (PF2) through the strong electrostatic interaction. Finally, a monolithic integration of aligned arrays of DNA-templated PF2 nanowires to yield two DNA/PF2-based devices is demonstrated. It is envisioned that this strategy can be readily extended to pattern other biomolecules and may render a broad range of potential applications from the nucleotide sequence and hybridization as recognition events to transducing elements in chemical sensors.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Science > Department of Chemistry > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.