Probing Distinct Fullerene Formation Processes from Carbon Precursors of Different Sizes and Structures
- Authors
- Han, Jong Yoon; Choi, Tae Su; Kim, Soyoung; Lee, Jong Wha; Ha, Yoonhoo; Jeong, Kwang Seob; Kim, Hyungjun; Choi, Hee Cheul; Kim, Hugh I.
- Issue Date
- 16-8월-2016
- Publisher
- AMER CHEMICAL SOC
- Citation
- ANALYTICAL CHEMISTRY, v.88, no.16, pp.8232 - 8238
- Indexed
- SCIE
SCOPUS
- Journal Title
- ANALYTICAL CHEMISTRY
- Volume
- 88
- Number
- 16
- Start Page
- 8232
- End Page
- 8238
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/87812
- DOI
- 10.1021/acs.analchem.6b02076
- ISSN
- 0003-2700
- Abstract
- Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometry (LDI-IM-MS) of carbon substrates possessing different molecular sizes and structures to understand the formation process of fullerene. Our observations show that the formation process is strongly dependent on the size of the precursor used, with small precursors yielding small fullerenes and large graphitic precursors generally yielding larger fullerenes. These results clearly demonstrate that fullerene formation can proceed via both bottom-up and top-down processes, with the latter being favored for large precursors and more efficient at forming fullerenes. Furthermore, we observed that specific structures of carbon precursors could additionally affect the relative abundance of C-60, fullerene. Overall, this study provides an advanced understanding of the mechanistic details underlying the formation processes of fullerene.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Science > Department of Chemistry > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.