Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors
- Authors
- Hong, Sung-Gil; Kim, Jae Hyun; Kim, Ryang Eun; Kwon, Seok-Joon; Kim, Dae Woo; Jung, Hee-Tae; Dordick, Jonathan S.; Kim, Jungbae
- Issue Date
- 8월-2016
- Publisher
- KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING
- Keywords
- enzyme adsorption/precipitation/crosslinking; glucose oxidase; graphene oxide; biosensors; carbon nanotubes
- Citation
- BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, v.21, no.4, pp.573 - 579
- Indexed
- SCIE
SCOPUS
KCI
- Journal Title
- BIOTECHNOLOGY AND BIOPROCESS ENGINEERING
- Volume
- 21
- Number
- 4
- Start Page
- 573
- End Page
- 579
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/87872
- DOI
- 10.1007/s12257-016-0373-4
- ISSN
- 1226-8372
- Abstract
- Glucose oxidase (GOx) was immobilized onto graphene oxide (GRO) via three different preparation methods: enzyme adsorption (EA), enzyme adsorption and crosslinking (EAC), and enzyme adsorption, precipitation and crosslinking (EAPC). EAPC formulations, prepared via enzyme precipitation with 60% ammonium sulfate, showed 1,980 and 1,630 times higher activity per weight of GRO than those of EA and EAC formulations, respectively. After 59 days at room temperature, EAPC maintained 88% of initial activity, while EA and EAC retained 42 and 45% of their initial activities, respectively. These results indicate that the steps of precipitation and crosslinking in the EAPC formulation are critical to achieve high enzyme loading and stability of EAPC. EA, EAC and EAPC were used to prepare enzyme electrodes for use as glucose biosensors. Optimized EAPC electrode showed 93- and 25-fold higher sensitivity than EA and EAC, respectively. To further increase the sensitivity of EAPC electrode, multi-walled carbon nanotubes (MWCNTs) were mixed with EAPC for the preparation of enzyme electrode. Surprisingly, the EAPC electrode with additional 99.5 wt% MWCNTs showed 7,800-fold higher sensitivity than the EAPC electrode without MWCNT addition. Immobilization and stabilization of enzymes on GRO via the EAPC approach can be used for the development of highly sensitive biosensors as well as to achieve high enzyme loading and stability.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.